3.2.63 \(\int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [163]

3.2.63.1 Optimal result
3.2.63.2 Mathematica [C] (verified)
3.2.63.3 Rubi [A] (verified)
3.2.63.4 Maple [A] (verified)
3.2.63.5 Fricas [C] (verification not implemented)
3.2.63.6 Sympy [F(-1)]
3.2.63.7 Maxima [F]
3.2.63.8 Giac [F]
3.2.63.9 Mupad [B] (verification not implemented)

3.2.63.1 Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {20 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \]

output
4*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d* 
x+1/2*c),2^(1/2))/d+20/3*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2* 
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a^3*sin(d*x+c)/d/cos(d*x+c)^( 
1/2)+2/3*a^3*sin(d*x+c)*cos(d*x+c)^(1/2)/d
 
3.2.63.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.40 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.60 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a^3 \csc (c+d x) \left (-3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+\cos (c+d x) \left (-1+\cos ^2(c+d x)+10 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+3 \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )\right )}{3 d \sqrt {\cos (c+d x)}} \]

input
Integrate[(a + a*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]
 
output
(-2*a^3*Csc[c + d*x]*(-3*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] 
*Sqrt[Sin[c + d*x]^2] + Cos[c + d*x]*(-1 + Cos[c + d*x]^2 + 10*Hypergeomet 
ric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2] + 3*Cos[c + d*x 
]*Hypergeometric2F1[1/2, 3/4, 7/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2]))) 
/(3*d*Sqrt[Cos[c + d*x]])
 
3.2.63.3 Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3042, 3236, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3236

\(\displaystyle \int \left (a^3 \cos ^{\frac {3}{2}}(c+d x)+\frac {a^3}{\cos ^{\frac {3}{2}}(c+d x)}+3 a^3 \sqrt {\cos (c+d x)}+\frac {3 a^3}{\sqrt {\cos (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {20 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {4 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\)

input
Int[(a + a*Cos[c + d*x])^3/Cos[c + d*x]^(3/2),x]
 
output
(4*a^3*EllipticE[(c + d*x)/2, 2])/d + (20*a^3*EllipticF[(c + d*x)/2, 2])/( 
3*d) + (2*a^3*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]) + (2*a^3*Sqrt[Cos[c + d 
*x]]*Sin[c + d*x])/(3*d)
 

3.2.63.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3236
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*( 
x_)])^(m_.), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(d*sin[e + 
f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IGt 
Q[m, 0] && RationalQ[n]
 
3.2.63.4 Maple [A] (verified)

Time = 5.97 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.89

method result size
default \(-\frac {4 a^{3} \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-4 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(172\)
parts \(-\frac {2 a^{3} \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {6 a^{3} \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}+\frac {6 a^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(522\)

input
int((a+cos(d*x+c)*a)^3/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
-4/3*a^3*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-4*sin(1/2*d*x+1/2*c)^2 
*cos(1/2*d*x+1/2*c)+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2 
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.63.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.98 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} a^{3} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (a^{3} \cos \left (d x + c\right ) + 3 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{3 \, d \cos \left (d x + c\right )} \]

input
integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="fricas")
 
output
-2/3*(5*I*sqrt(2)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) - 5*I*sqrt(2)*a^3*cos(d*x + c)*weierstrassPInverse(-4, 
0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*a^3*cos(d*x + c)*weierstra 
ssZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 
 3*I*sqrt(2)*a^3*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c))) - (a^3*cos(d*x + c) + 3*a^3)*sqrt(co 
s(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))
 
3.2.63.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**3/cos(d*x+c)**(3/2),x)
 
output
Timed out
 
3.2.63.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)
 
3.2.63.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^3/cos(d*x + c)^(3/2), x)
 
3.2.63.9 Mupad [B] (verification not implemented)

Time = 14.64 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6\,a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {20\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3\,d}+\frac {2\,a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3\,d}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + a*cos(c + d*x))^3/cos(c + d*x)^(3/2),x)
 
output
(6*a^3*ellipticE(c/2 + (d*x)/2, 2))/d + (20*a^3*ellipticF(c/2 + (d*x)/2, 2 
))/(3*d) + (2*a^3*cos(c + d*x)^(1/2)*sin(c + d*x))/(3*d) + (2*a^3*sin(c + 
d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(s 
in(c + d*x)^2)^(1/2))